
NeuroMeter: An Integrated Power, Area, and
Timing Modeling Framework

for Machine Learning Accelerators
Industry Track Paper

Tianqi Tang
UC Santa Barbara

Santa Barbara, CA, US

tianqi tang@ucsb.edu

Sheng Li
Google

Mountain View, CA, US

lsheng@google.com

Lifeng Nai
Google

Mountain View, CA, US

lnai@google.com

Norm Jouppi
Google

Mountain View, CA, US

jouppi@google.com

Yuan Xie
UC Santa Barbara

Santa Barbara, CA, US

yuanxie@ece.ucsb.edu

Abstract—As Machine Learning (ML) becomes pervasive in
the era of artificial intelligence, ML specific tools and frameworks
are required for architectural research. This paper introduces
NeuroMeter, an integrated power, area, and timing modeling
framework for ML accelerators. NeuroMeter models the detailed
architecture of ML accelerators and generates a fast and accurate
estimation on power, area, and chip timing. Meanwhile, it
also enables the runtime analysis of system-level performance
and efficiency when the runtime activity factors are provided.
NeuroMeter’s micro-architecture model includes fundamental
components of ML accelerators, including systolic array based
tensor units (TU), reduction trees (RT), and 1D vector units (VU).
NeuroMeter has accurate modeling results, with the average
power and area estimation errors below 10% and 17% respec-
tively when validated against TPU-v1, TPU-v2, and Eyeriss.

Leveraging the NeuroMeter’s new capabilities on architecting
manycore ML accelerators, this paper presents the first in-depth
study on the design space and tradeoffs of “Brawny and Wimpy”
inference accelerators in datacenter scenarios with the insights
that are otherwise difficult to discover without NeuroMeter. Our
study shows that brawny designs with 64x64 systolic arrays
are the most performant and efficient for inference tasks in
the 28nm datacenter architectural space with a 500mm2 die
area budget. Our study also reveals important tradeoffs between
performance and efficiency. For datacenter accelerators with low
batch inference, a small (∼16%) sacrifice of system performance
(in achieved Tera OPerations per Second, aka TOPS) can lead to
more than a 2x efficiency improvement (in achieved TOPS/TCO).
To showcase NeuroMeter’s capability to model a wide range of
diverse ML accelerator architectures, we also conduct a follow-
on mini-case study on implications of sparsity on different ML
accelerators, demonstrating wimpier accelerator architectures
benefit more readily from sparsity processing despite their lower
achievable raw energy efficiency.

Index Terms—accelerator, hardware modeling, deep learning

I. INTRODUCTION

As Machine learning (ML) becomes pervasive in the era of

artificial intelligence, we have witnessed a “Cambrian explo-

sion” of ML accelerators with a plethora of different acceler-

ators being proposed and/or implemented from both academia

and industry [47]. These ML accelerators are designed for a

wide range of use cases, ranging from cloud to edge devices;

they are designed as either standalone accelerators or near-

memory processors [37]. With significantly different scenarios,

performance and efficiency targets, the design space of ML

accelerators is very large and complex, which in turn drives

the clear need for a fast and accurate modeling of power, area,

and chip timing of ML accelerator architectures. On the other

hand, architecture level analytical modeling frameworks, such

as CACTI [43], McPAT [39], Wattch [15], and GPUWattch

[38], have been proven to be very useful for the architec-

ture community. These modeling frameworks provide fast,

accurate, and easy-to-understand modeling results of power,

area, and timing on cache, memory, CPU, and GPU. However,

with the recent boom of new ML accelerators, the community

lacks an architectural analytical modeling framework for ML

accelerators.

This paper introduces NeuroMeter, an integrated power,

area, and timing modeling framework for ML accelerators.

NeuroMeter advances the state-of-the-art from at least three

aspects. Firstly, unlike prior ML accelerator modeling frame-

works that either model power, area, or timing in isolation

or require EDA tools, NeuroMeter is the first framework to

simultaneously model power, area, and timing analytically

at the architecture level. Secondly, NeuroMeter supports de-

tailed modeling of critical architectural components of ML

accelerators, including 2D systolic arrays, reduction trees,

1D vector units, vector register files, and beyond. Thirdly,

compared to previous modeling frameworks such as McPAT,

NeuroMeter increases the architectural abstraction level. For

example, it only requires users to configure high level ar-

chitecture; meanwhile, it automatically scales and configures

dependent hardware resources. As another example, it only

requires users to configure high-level design targets, such as

TOPS; meanwhile, it automatically searches for the optimal

clock rate. To ensure accuracy, we have conducted a rigorous

validation on NeuroMeter results on both the component level

and the whole-chip level. Our validation shows that Neu-

roMeter achieves high modeling accuracy, with overall power

and area estimation errors below 10% and 17% respectively

855

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00075

when validated against TPU-v1 [30], TPU-v2 [29], and Eyeriss

[17]. When combined with an external performance simulator

via its flexible and extensible interface, NeuroMeter enables

a comprehensive study of architecture, system performance

(TOPS), power efficiency (TOPS/Watt), and cost efficiency

(TOPS/TCO). With its new capabilities, NeuroMeter empow-

ers architects with a fast yet accurate modeling framework

for exploring emerging manycore ML accelerators in a large

architectural design space.

The first contribution of this paper is that NeuroMeter

significantly advances the state-of-the-art, enhancing the ar-

chitectural modeling ecosystem of ML accelerators for the

community. Recent work such as Accelergy [55] and Timeloop

[44] provide an ecosystem for architecture level ML ac-

celerator modeling. Timeloop [44] is an automatic design

exploration tool, requiring fast energy consumption evalua-

tions. Such fast energy consumption evaluations are supported

by a high-level modeling tool, Accelergy [55], which relies

on CACTI and lookup-table based energy models. However,

the community still lacks an accurate analytical architecture

modeling for the whole accelerator architecture to analytically

model all accelerator components in the way CACTI does for

memory arrays. NeuroMeter bridges this gap by providing

a consistent analytical modeling methodology for the entire

accelerator chip, building a strong foundation for Accelergy,

Timeloop, among others [31] [36] [51], to form a robust and

coherent ecosystem. Meanwhile, with its modular structure,

NeuroMeter can also be used as a standalone framework, if

the users choose to.

The second contribution of this paper is the in-depth and

comprehensive design space exploration on ML accelerators.

With the recent “Cambrian explosion” of ML accelerators, two

clear design paths have emerged. One path is a “Brawny” de-

sign that uses a few large cores such as Google’s TPU (single

core with a 256x256 systolic array in TPU-v1 [30]; dual cores,

each with one 128x128 systolic array in TPU-v2 [21]), while

the other path is a “Wimpy” design that uses a sea of small

cores such as nVidia’s Volta (640 TensorCores with 64 FMAs

per clock per TensorCore [19]) and Ampere (512 TensorCores

with 1024 FMAs per clock per TensorCore and hardware

supports for structural sparsity [3]). While both design paths

have proven to be successful and inspired many subsequent

designs, there is no in-depth quantitative understanding about

the essence and rationale of either design path. To bridge

this gap, we conduct comprehensive and consistent studies

on the design space and tradeoffs of “Brawny and Wimpy”

for datacenter inference accelerators. Our study reveals that

for datacenter chips with a 500mm2 silicon area budget, a

dual-core accelerator with four 64x64 systolic arrays per core

has superior efficiency and performance on inference tasks

among 28nm design points, despite relatively lower utilization.

Moreover, our study also reveals important tradeoffs among

different design targets. For example, for datacenter accel-

erators with low batch inference, a small (∼ 16%) sacrifice

of performance (achieved TOPS) can lead to more than 2x

improvement of efficiency (achieved TOPS/TCO).

Based on these choices of accelerator architectures, we

also conduct a follow-on mini-case study on energy effi-

ciency (TOPS/Watt) implications of sparsity on both systolic-

array and reduction-tree based ML accelerators to showcase

NeuroMeter’s capability to model diverse ML accelerator

architectures. Our results show that despite their relatively

lower energy efficiency, it is easier for wimpier accelerator

architectures to benefit from sparsity processing.

The rest of the paper is organized as follows: Sec. II

gives the overview, modeling methodology, and validation of

NeuroMeter; Sec. III leverages NeuroMeter to conduct the

case study on brawny and wimpy manycore ML accelerators in

the datacenter inference scenarios; Sec. IV conducts a sparse-

oriented mini-case study to showcase NeuroMeter’s func-

tionality to model diverse architectures and support various

workloads; Sec. V discusses the related work; and Sec. VI

concludes the paper with a summary on NeuroMeter and the

insights discovered from our two case studies.

II. NEUROMETER: OVERVIEW, MODELING

METHODOLOGY, AND VALIDATION

NeuroMeter is an integrated power, area, and timing model-

ing framework for ML accelerators. Fig. 1 gives an overview

of NeuroMeter, and highlights its input/output interface. There

are two types of inputs to NeuroMeter: 1) the accelerator

hardware configuration (mandatory) for NeuroMeter to con-

struct and optimize the target accelerator; 2) the runtime statis-

tics (optional) for NeuroMeter to conduct runtime analysis.

NeuroMeter by default outputs the power, area, and timing

of target ML accelerators based on their specified hardware

configuration. With the help of an external application-level

performance simulator, NeuroMeter enables system perfor-

mance and efficiency analysis as well.

NeuroMeter allows users to specify the parameters at the

architecture, circuit, and technology level, as well as the opti-

mization targets and constraints, as shown in Fig. 1. Besides

the essential parameters, such as the core count, clock rate,

power supply voltage, and technology node, it only requires

the user to provide the high-level configurations of critical

hardware components without worrying about the low-level

configurations. For example, when the user configures the

computing components of the accelerator, they only need to

configure critical parameters, such as the tensor unit’s array

height/width, the data type of the multiplication-accumulation

unit, and the type of inner array interconnection, the tool itself

will automatically help the user figure out the dependent hard-

ware components, including the vector register file, the scalar

unit, and the interconnection overheads between different

components. When the user configures the on-chip memory,

they only need to configure the parameters of capacity, block

size, target latency, and the target throughput. The tool will

automatically set the low-level parameters (such as the number

of banks, the number of the read/write ports) via its internal

optimizer.

By default, NeuroMeter requires the input of system-level

performance (i.e., peak TOPS) as the optimization target (or

856

Fig. 1. Overview of NeuroMeter Framework

a minimal value of it as a design constraint). TOPS/Watt and

TOPS/TCO are also allowed to feed in as alternative optimiza-

tion targets or design constraints. Given the system-level per-

formance constraints, NeuroMeter conducts the component-

level timing analysis using an Elmore delay model [23]. Once

a design is found to meet the optimization targets and design

constraints, NeuroMeter finalizes an internal chip representa-

tion to get the chip-level thermal design power (TDP), sili-

con area, and their component-level breakdowns. NeuroMeter

also outputs the timing information of the electrical signal

propagation delay (e.g., Elmore Delay) and the cycle time per

component to help the user find out the hardware critical path.

When given the runtime statistics of the target ML model

running on the accelerator, NeuroMeter also combines the

inputs of runtime statistics on hardware utilization and activity

factors for micro-architecture components with the chip-level

TDP and silicon area to generate the end-to-end runtime

estimation of performance1, power, and efficiency of the

target accelerators running specified ML models. NeuroMeter

decouples the performance simulation from the architecture

modeling, so that it can be flexibly paired with any external

performance simulation framework for comprehensive ML

accelerator research.

A. Architecture-Level Modeling

NeuroMeter follows a top-down modeling methodology. As

shown in Fig. 2(a), high-level blocks are divided into lower-

level sub-blocks and finally mapped onto the circuit-level mod-

els of compute logic units, memory arrays, and hierarchical

wires, with backend technology device and wiring parameters.

At the chip architecture level, NeuroMeter models a multi-

core ML accelerator. Fig. 2(b) gives an example of a multi-

core accelerator with a 2D-mesh Network-on-Chip (NoC),

while other types of NoCs are also supported, including bus,

1The word “Performance” here represents the program execution time (i.e.,
end-to-end latency) and/or throughput.

(a) Modeling Methodology & Architectural Breakdown

TU

(b) Multi-core Accelerator with 2D Mesh NoC

SC SC SC SC

SC SC SC SC

SC SC SC SC

SC SC SC SCIn
pu

t/O
ut

pu
tF

IF
O

In
pu

t F
IF

O

SC SC SC SC

SC SC SC SC

SC SC SC SC

SC SC SC SC

Input FIFO

(c) Different Types of TU. Left: Uni-Cast, Right: Multi-Cast

(d) Analytical Model of cell-to-cell Interconnection in Multi-Cast TU

Accelerator

MC MC

MC MC

Tx

Ty

Core NoC MC

SULSUEXUIFU

Accelerator

VU VReg CDB Mem

Logic Array Wire

Device Wire

RT

Arch

Circuit

Tech

Fig. 2. NeuroMeter’s Top-Down Modeling Methodology

ring, and H-tree. Other peripheral blocks, including Memory

Controllers (MCs) and DMA controllers, are also modeled.

At the core architectural level, NeuroMeter breaks down

a single core into an Instruction Fetch Unit (IFU), a Load-

and-Store Unit (LSU), an EXecution Unit (EXU), and a

Scalar Unit (SU) for control. An IFU in ML accelerators is

usually lightweight, unlike the complicated front-end circuit in

high performance general-purpose processors. An LSU in ML

accelerator includes on-chip memory (Mem) and data/control

paths to off-chip memory. The most critical component is

EXU, which is further broken down into multiple functional

units, i.e., 2D systolic array based Tensor Unit (TU), Reduction

857

Tree (RT), 1D Vector Unit (VU), Vector Register file (VReg),

and Central Data Bus (CDB). Each unit is discussed below.

Tensor Unit (TU) is a generic systolic array made up of

three parts, (1) an array of systolic cells (SCs), each one

of which consists of a multiplication-accumulation (MAC)

unit and a D-Flip-Flop (DFF) or SRAM based local buffer;

(2) wires connecting nearby systolic cells; (3) DFF/SRAM

based I/O FIFOs. Our tool supports TUs with various types

of interconnections between systolic cells and I/O FIFOs.

Fig. 2(c) exemplifies two types of inner-TU interconnections,

including unicast as in Google’s TPU-v1, and multicast (or

X/Y bus) as in Eyeriss. For systolic arrays (or unicast TUs)

we support modeling of both weight-stationary and output-

stationary dataflow with a flexible systolic cell configuration.

At the circuit level, MAC units inside the systolic cells are pre-

simulated through EDA tools, while the DFF/SRAM based lo-

cal buffers, I/O FIFO, and the cell-to-cell interconnections are

modeled analytically. Fig. 2(d) illustrates the multicast inner-

TU interconnection as an example, i.e., the interconnection is

decomposed into several segments of wires that are abstracted

into the π-RC model; the output resistance of the I/O FIFO

and the input resistance of the systolic cells are extracted as

the drive and the load of the RC path respectively.

Reduction Tree (RT) is made up of three parts, (1) a N-

input 1D MAC array (which is similar as in VU); cascaded

by (2) a log(N)-layered adder tree; (3) the (optional) DFFs

between the two nearby layers to satisfy the timing constraints

if needed. In the default configuration, we assume that each

layer uses an array of 2-by-1 adders in the adder tree. The

users can customize the type of the adder and the level of the

adder tree according to their design requirements. The RT is

broadly used in sparsity-aware accelerator designs [36] [48]

[57] since it has more flexible workload mapping compared

with the 2D array based TU.

Vector Unit (VU) processes 1D vector operations, such as

pooling, activation, and different variants of normalization. It

also merges the partial sums when one TU is not large enough

to hold the whole Conv2D or MatMul operator without tiling.

Moreover, in some ML accelerators [26] without 2D TUs, VUs

are the main processing elements. Such accelerators can be

well supported by NeuroMeter. The vector register file (VReg)

is the center for data exchange inside VU as well as between

VU and TU. In the default architectural configuration, the

number of the VU lanes and the vector width of VReg match

the TU array length; and each TU/VU has private read/write

VReg ports. For the core with single VU and single TU, VReg

is configured as 4 read ports and 2 write ports to support dual

issue width. Meanwhile, multiple TUs can be configured to

share one group of read/write VReg ports. In that case, the

external performance tool has to exclude the mapping based

on independent data to different TUs, or include the extra cost

when data broadcast is not applicable.

Scalar Unit (SU) is mainly used for auxiliary operations in

the control flow, e.g., address calculation. Leveraging McPAT’s

configuration, SU is by default configured as a simplified

“ARM Cortex-A9 core” which only has the instruction fetch

unit (w/o branch prediction logic), integer register file, ALU,

and LSU, with the rest of the core removed. It can also be

easily reconfigured to other architectures.

On-chip Memory (Mem) models the storage units, which

hold the weights and feature maps on the chip. It can be

configured as a software-managed scratchpad memory, which

is commonly used in many ML ASICs, or a cache hierarchy.

The cell type of Mem can be selected from DFF, SRAM, and

eDRAM. According to the throughput requirements, Mem is

always configured as multi-banked. Based on the architectural

configurations, Mem can be modeled as a unified structure

where weights and activations are stored together as in TPU-

v1, or as a dedicated structure where each bank has its own

functionality as in Eyeriss.

Central Data Bus (CDB) models the interconnection be-

tween different components within the core, especially the

wires connecting VReg and other functional components, in-

cluding TU, VU, and Mem. Wires are assumed to route around

the functional components, and their length is estimated by

the square root of the functional component area. When the

length is large, wires are pipelined to meet the throughput

requirement.

B. Circuit and Technology-Level Modeling

NeuroMeter models the power, area, and timing of the

hardware components analytically and simultaneously. Similar

to McPAT, NeuroMeter maps the architectural components to

basic logic gates and regular circuit blocks, including comput-

ing arrays (e.g., TU, VU), memory arrays (e.g., DFF, SRAM,

and eDRAM), interconnects (e.g., router, link, and bus), and

regular logic (e.g., decoder and dependency-checking unit).

These circuit blocks are then mapped to fundamental analytical

RC ladder/trees and layout models to compute timing, area,

and energy at different technology nodes.

However, an analytical approach does not work well for

complex structures that have custom layouts, such as the

MAC logic in the TU, VU, and SU. For these components,

NeuroMeter currently takes an empirical modeling approach,

which utilizes curve fitting to build a parameterizable numeri-

cal model for the area and power of complex components. The

empirical model is based on synthesis results from Design

Compiler using the RTL models from Berkeley Hardware

Floating Point Unit Library [2] with the technology backend

of FreePDK [13] [42] libraries.

C. Validation

The primary focus of NeuroMeter is fast yet accurate power

and area modeling at the architectural level when given the

target system performance (i.e., peak TOPS). To ensure the

accuracy of NeuroMeter, we conduct rigorous validations at

both the component level and the whole chip level. At the
component level, we validate NeuroMeter’s power, area, and

timing results against the synthesis results from Chisel [11]

with the FreePDK45 library. The validation against EDA

tools shows that NeuroMeter’s prediction is within a 15%

area error margin, which provides strong confidence for our

858

component level modeling accuracy. As power highly depends

on the block activity factors, we rigorously validate it at the

chip level assuming average power traces. At chip level, we

validate against TPU-v1 [30], TPU-v2 [29], and Eyeriss [17].

NeuroMeter demonstrates satisfying modeling accuracy, with

about 10% and 17% error margins on overall power and

area respectively against the three real ML accelerators. It is

important to note that chip-to-chip power variation in modern

microprocessors [14] is comparable to the magnitude of the

power validation errors of NeuroMeter.

Fig. 3 shows TPU-v1’s validation results of power and area,

at a 28nm technology node with a 700MHz target clock rate.

At the chip level, the modeling results of overall power (i.e.,

TDP) and area have <5% and <10% error respectively, com-

pared with the published TDP (75W) and area (<331mm2).

At the component level, TPU-v1 contains four major parts: (1)

a MAC-based Systolic Array for matrix multiplication; (2) a

Unified Buffer & Weight FIFO for activation and weights; (3)

an Accumulator Buffer for partial sums; and (4) an Activation

Pipeline for other operations. NeuroMeter models the systolic

array by the TU with a unicast interconnection; models the

unified buffer, accumulator buffer, and the weight FIFO by

the Mem; and models the activation pipeline with the VU.

As shown in Fig. 3(a), NeuroMeter produces accurate area

modeling results (within 2% relative error) for the systolic

array and the accumulator buffer; but over-estimates the rela-

tive area of the unified buffer by ∼10%, which may be due

to the lack of knowledge of optimized placement-and-routing

for the interconnect between systolic array and unified buffer

in TPU-v1. We also model the peripheral interfaces including

DRAM port (6.0% v.s. 2.8%) and PCIe interface (3.0% v.s.

1.8%). We currently do not model host interface, controller,

and misc I/O, with 5% in total. The unknown components

in TPU-v1 occupy ∼21% of the chip area, and we use the

same percentage as white space in our area overall estimation.

Although no published data exists to compare against, the

NeuroMeter power breakdown is shown in Fig. 3(b), where

the systolic array is the biggest power consumer with 56% of

the total chip power.

Fig. 4 shows the area validation of TPU-v2 at an assumed

16nm technology node2 with a 700MHz target clock. At the

chip level, the modeling results of area (513mm2) have at most

17% error compared with the published area (< 611mm2);

and the modeling results of TDP (255W) have ∼9.1% error

compared with the published TDP (280W). Similar to TPU-

v1, NeuroMeter models the MXU, Vector Unit, and Vmem

by systolic array based TU, VU, and Mem respectively. We

would like to highlight that our simulation results show that

TPU-v2 requires two read ports and one write ports per bank,

and this is automatically searched by NeuroMeter with the

given throughput requirement. Furthermore, we also modeled

the Inter-Chip Interconnection (ICI) link and switch (12% vs

5%) by the components of Network Interface Unit (NIU)

2According to the published information [29], TPU-v2’s technology node
is greater than 12nm.

24%

29%
6%

6%
3%
6%

5%21%
72.18, 26%

108.23,
39% 12.66, 5%

6.16, 2%
3.98, 1%
2.46, 1%

13.9, 5%
58.37, 21%

39.45,
56% 24.57,

35%4.07, 6%
0.93, 1%

0.43, 0%

1.41, 2%

Systolic Array
Unified Buffer
Accumulator
DRAM Port
PCIe Interface
Activation Pipeline
Unmodeled
Unknown

(a) Area Breakdown of TPU1 Whole Chip
Outer Ring: NeuroMeter (298.85mm2 in total),
Inner Ring: Published Data (<331mm2 in total)

(b) TDP Power Breakdown of TPU1 Whole Chip
Ring: NeuroMeter (70.86W in total),
Ref: Published Data (<75W in total)

Fig. 3. Area and Power Break Down of TPU-v1 Published Data [30] v.s.
NeuroMeter Simulation Results. TPU-v1 @ 700MHz with 0.86V power
supply is fabricated at 28nm. Architecture parameters used in the model are:
Systolic Array Size: 256x256; Accumulator: 256 int32 adders; Unified Buffer:
24MB, dual banks, one read port and one write port; Accumulator Buffer:
4MB, 4k blocks per bank, dual ports; PCIe Gen3x16: 14GB/s. Notice: The
ring only shows the relative percentage of different hardware components; the
ring diameter has nothing to do with the absolute power/area.

8%

30%
2%

12%2%9%

14%

23%

34.01, 7%
194.74,

38%

83.91, 16%8.89, 2%
24.64,5%

57.69,
11%

106.39,
21% MXU (two 128x128 systolic array)

Vector Unit (x4) + Vmem (x4)
Core Seq (x2) + I/Smem (x2)
ICI link (x4) + ICI switch
PCIe Link + PCIe Ctrl
HBM Port (x4)
Unmodeled
Blank (Wiring + Unknown)

Area Breakdown of TPU2 Whole Chip
Outer Ring: NeuroMeter (512.94mm2 in total),
Inner Ring: Published Data (<611mm2 in total)

Fig. 4. Area Break Down of TPU-v2 Published Data [29] v.s. NeuroMeter
Simulation Results. TPU-v2 @ 700MHz with 0.75V power supply assumes to
be fabricated at 16nm. Architecture parameters used in the model are: MXU:
two 128x128 systolic arrays with BF16 multiplier and FP32 adder; VMem:
8MB, quad-banks, with two read ports and one write port. Notice: The ring
only shows the relative percentage of different hardware components; the ring
diameter has nothing to do with the absolute power/area.

and NoC given the bisectional bandwidth at 496Gb/s per

direction. Other peripheral components, including HBM ports

(9% v.s 5%) and PCIe Controllers (2% vs 2%) are also

modeled. We currently do not model transpose unit, RPU, and

misc datapath, with 11% in total. The unknown components

(which probably includes the inter-component interconnection)

in TPU-v2 occupy ∼21% of the chip area, and we use the same

percentage as white space in our overall area estimation.

Fig. 5 shows Eyeriss’s validation results of power and area,

at a 65nm technology node with a 200MHz target clock

rate. As shown in Fig. 5(a) and (b), the area modeling of

the single PE and the overall results have <5% and <15%

error respectively. At the single PE level, Eyeriss’s PE is

modeled by NeuroMeter’s systolic cells in the TU. At the chip

level, Eyeriss’s three major components, i.e., PE Array, Global

Buffer, and MultiCast NoC, are modeled by the TU, Mem, and

inner-TU connection respectively as introduced in Sec. II-A.

Other chip-level components, including Run-Length Code &

ReLU, Config Scan Chain, and Top-Level Ctrl, are also

modeled. As shown in Fig. 5(b), the relative area breakdown of

PE array is overestimated by ∼7%, which may result from the

limited knowledge of the exact MAC logic model in use. The

relative area breakdown of the global buffer is under-estimated

by ∼7%, which may be due to the insufficient knowledge of

the outside-bank overhead. Compared with TPU-v1, the area

breakdown of the PE array in Eyeriss is much larger than that

of the systolic array in TPU-v1. Both of them are modeled by

859

9.629,
79%

2.303,
19%

0.221,
2%

9.19,
85%

1.191,
11%

0.272,
3%

PE Array

Global Buffer

9.629, 79%

2.303, 19%

0.221, 2%

9.19, 85%

1.191, 11%

0.272, 3% PE Array
Global Buffer
Run-Length Codec & Relu
Config Scan Chain
Top-Level Ctrl
MultiCast NoC

0.035, 61%
0.005, 9%

0.01, 18%

0.007, 12%

0.03, 56%0.01, 18%

0.007, 13%

0.007, 13%

Spad Mem
MAC
FIFO
PE Ctrl

(b) Area Breakdown of Eyeriss Single PE
Outer Ring: NeuroMeter (0.054mm2 in total),

Inner Ring: Published Data (0.057mm2 in total)

(a) Area Breakdown of Eyeriss Whole Chip
Outer Ring: NeuroMeter (10.87mm2 in total),

Inner Ring: Published Data (12.25mm2 in total)

(c) Runtime Power Breakdown of AlexNet-Conv1
Outer Ring: NeuroMeter (356mW in total),

Inner Ring: Published Data (320mW in total)

(d) Runtime Power Breakdown of AlexNet-Conv5
Outer Ring: NeuroMeter (197mW in total),

Inner Ring: Published Data (227mW in total)

49, 15%
6, 2%

210,
66%

44,14%
4, 1%
5, 2%

49, 14%
7, 2%

208, 58%

80, 23%
4, 1%
8, 2%

40, 18%
10, 4%

142,
63%

13, 6%
9, 4%

12, 5%

40,20%

9, 5%

99, 50%
23, 12%

4, 2%
21, 11% PE Ctrl

PE I/O FIFO
Spad Mem
MAC
MultiCast NoC
Global Buffer

Fig. 5. Area and Power Break Down of Eyeriss-v1 Published Data [17] v.s.
NeuroMeter Simulation Results.Eyeriss @ 200MHz with 1.0V power supply
is fabricated at 65nm. Architecture parameters used in the model are: PE
Array Size: 14x12; Local Buffer per PE: 448byte SRAM, 72byte registers,
PE I/O FIFO transferring between 32bit to 8bit; Global Buffer: 108kB, 27
banks in total, dual ports. Notice: The ring only shows the relative percentage
of different hardware components; the ring diameter has nothing to do with
the absolute power/area.

the TU in NeuroMeter, but Eyeriss introduces a heavier local

buffer design, i.e., every PE has the local scratchpad memory

and register files to support the row-stationary dataflow.

We also validate the runtime power3 against the report

from Eyeriss when running publicly available ML models.

As shown in Fig. 5(c) and (d), the overall power has 11%

over-estimation and 13% under-estimation respectively when

running AlexNet-Conv1 and AlexNet-Conv5 layers. The dif-

ferences of the runtime power in these two layers may result

from the insufficient knowledge of the zero-skipping and

clock-gating operation in Eyeriss. To be consistent with the

published data, the power consumption breaks down into the

following six components, including (1) MAC logic, (2) local

buffer (Spad Mem), (3) PE I/O FIFO, (4) PE controller,

(5) multicast NoC, and (6) global buffer; and the first five

components are the internal structures of the PE array. The

unmodeled components include chip I/O pads and top-level

control and are not shown in Fig. 5. Since NeuroMeter does

not model the clock network as a separate component, we

amortize the power breakdown of the clock network into

other components. Similar to the TDP in TPU-v1, the PE

array in Eyeriss takes the major proportion of the runtime

power consumption. Unlike TPU-v1’s TDP, the global buffer

in Eyeriss takes a much smaller proportion. This shows the

difference between TDP and the runtime power consumption.

III. CASE STUDY ON BRAWNY AND WIMPY MANYCORE

MACHINE LEARNING ACCELERATORS

Of the many types of ML accelerators that have emerged,

one type can be classified as having relatively “Brawny” core

designs that use a few large systolic arrays such as Google’s

3In order to decouple the error of hardware modeling from the error of
performance analysis, we calculate the activity factor based on the published
data of the processing time, the number of active PEs, the percentage of zero
input feature maps, and the number of global buffer accesses.

TPU (a single core with a 256x256 systolic array [30] in TPU-

v1 or dual cores with one 128x128 systolic array per core

in TPU-v2 [21]). Another class are designs based on relative

“Wimpy” cores that use a sea of small computing arrays or

vector processing units such as nVidia’s Volta architecture (640

TensorCores with 64 FMAs per clock per TensorCore [19])

and Ampere architecture (512 TensorCores with 1024 FMAs

per clock per TensorCore and hardware supports for structural

sparsity [3]). Intuitively, the brawny design is believed to have

an advantage of high performance, especially when the tensor

size is large enough; while the wimpy design is believed

to have an advantage of high utilization without sacrificing

performance by using sophisticated compiler and runtime

software. However, there is no in-depth and comprehensive

study to quantify these hypotheses, partly because of the lack

of tools.

To bridge this gap and to showcase the capability of Neu-

roMeter, we conduct detailed analyses to compare brawny and

wimpy manycore ML accelerator designs. Interestingly, the

brawny v.s. wimpy design tradeoffs have been a critical topic

in CPU design and date back to decades ago as summarized

in previous work [12]. We hope our work can foster a

comprehensive and systematic study of brawny and wimpy

design tradeoffs on the ML accelerator frontier.

In the study described in this section, the brawny accelerator

architecture uses fewer cores with large systolic array based

TU(s) per core, while the wimpy accelerator architecture uses

more cores with small systolic array based TU(s) per core. The

rest of the on-chip resources are scaled proportionally as the

systolic array size changes. While NeuroMeter models both

training and inference accelerators, we focus on the inference

accelerators in this paper and leave the study of training

accelerators to future work.

A. Experiment Methodology and Setup

In our study, we follow the general architecture of manycore

ML accelerators shown in Fig. 6. All cores are connected by

a 2D mesh NoC. Each core has a systolic array based tensor

unit (TU) for matrix operations; meanwhile, each core also

has a vector unit (VU) for vector operations. Each core may

also have a scalar unit (SU) for control path because of the

high throughput of TUs in the core. Each core has a portion

of the distributed on-chip memory (Mem). A vector register

file (VReg) is the data exchange hub among TU, VU, and

Mem. The central data bus (CDB) connects VReg and other

components inside the core.

1) Architecture Design Space and Chip Modeling: Since

brawny and wimpy is a continuous spectrum in the design

space, we denote each architectural design point by a four-

element tuple (X,N, Tx, Ty), where X is the TU length that

defines how brawny or wimpy the architecture is; N is the

number of TU in each core; Tx and Ty are the 2D mesh

NoC topology to connect all the cores. Given each tuple of

such a design point, NeuroMeter automatically scales and sets

the dependent hardware parameters such as the number of VU

860

Mem

IFU

aMXU
MXU

TU

CDB

#TU per Core N
N = {1, 2, 4}

VRegSReg

Full ALU

#VReg per lane Vcnt = 32
VReg issue width Viw = N+1VReg

VMAC VMAC VMACVMAC

VU lane per Core Vlane = X

VReg

VU

VReg

… …

TU Length X
X= {4, 8, 16, 32, 64, 128, 256}

TU
 Length X

Fig. 6. Single Core Architecture of the Datacenter Inference Chips

TABLE I
ARCHITECTURE CONFIGURATION OF DATACENTER DESIGN SPACE

Constraint
Tech Node = 28nm, Freq = 700MHz;
Area/Power Budget = 500mm2/300W.

Optimization Target
TOPS Upper Bound = 92TOPS.

Design Space (X,N, Tx, Ty)
TU array length X = {4, 8, 16, 32, 64, 128, 256};
#TU per tile N = {1, 2, 4}; TU data type = Int8.
Mem capacity = 32MB.
NoC bisectional bandwidth = 256GB/s;
Ring when #Tile on chip Tx ∗ Ty ≤ 4, 2D-Mesh when Tx ∗ Ty ≥ 8;
Off-chip bandwidth = 700GB/s (HBM).

lanes, the VReg issue width, and VReg port count accordingly

as shown in Fig. 6.

To some extent, chip architecting can be considered as an

optimization problem, where we try to maximize performance

under a given budget on chip area and power. Thus, we

pick reasonable optimization targets and design constraints to

make the design space exploration manageable. Particularly,

as shown in Table I, for datacenter inference accelerators, we

constrain the die area to 500mm2 and TDP to 300W based

on recent data center ML accelerators [21] [30]. The memory

subsystem is configured with 32MB of software managed on-

chip memory distributed to all cores and 700GB/s off-chip

HBM bandwidth, similar to Google’s TPU-v2/v3 [46]. Note

that TPU-v2/v3 are designed for both training and inference

[21]. We then use NeuroMeter to sweep the design space to

optimize the TOPS for each design point of (X,N, Tx, Ty)
with dependent hardware parameters automatically scaled pro-

portionally to the design point parameters as shown in Fig. 6

and Table I.

Before setting the ranges of the implicit hardware param-

eters in Fig. 6, we explore a larger design space of systolic

array centric architectures, including a larger number of TUs

per core, multiple TUs sharing VReg read/write ports, and

TABLE II
CHARACTERISTICS OF ML WORKLOADS USED IN CASE STUDY

Workload ResNet Inception NasNet
#MAC Op 7.8G 5.7G 23.8G

#Data 5.72M 2.93M 5.35M
#Param 23.7M 22.0M 84.9M

other types of inner-TU interconnection. We prune the design

points that exceed the area/power budgets or have extremely

low performance. We only take the design points that meet

the perf/power/area requirements into the second round for

further workload-aware analysis. To make the design space

manageable, we finally set the range of TU length (X) from 4

to 256. NeuroMeter automatically sets one VU per core with

its lane number the same as the TU array length. NeuroMeter

reserves two read ports and one write port in the VReg for

each functional unit. The number of TUs in each core (N)

determines how many total ports are required for each VReg,

where a large N leads to an overhead explosion of VReg. For

example, with eight 4x4 TUs per core, the VReg area and

power overhead is 12.7% and 24.9% of the core. To avoid

such an overhead explosion of VReg, N is capped at 4. The

distributed on-chip memory is automatically multi-banked by

NeuroMeter to satisfy the timing constraints determined by

the target TOPS and clock frequency. The total core count

(the product of Tx and Ty) is maximized to achieve the peak

TOPS target while under the area and power constraint. For the

convenience of evenly partitioning the neural network model,

we assume Tx and Ty to be the power-of-2 numbers. To make

the overall layout close to square, we assume that Tx is equal

to or half of Ty .

2) Machine Learning Models: Our datacenter case study

uses three widely adopted CNN models, including ResNet-

50 (abbrev. ResNet) [27], Inception-v3 (abbrev. Inception)

[54], and NasNet-A-Large (abbrev. NasNet) [58]. Table II

summarizes the characteristics of these ML models, including

the compute (#MAC Op/frame), the peak transient memory

footprint per frame (#Data), and the model size (#Param,

quantized into Integer8).

3) Performance Simulation and Efficiency Modeling: We

use TF-Sim [9] to simulate the performance of the ML models

running on the target accelerators. TF-Sim first takes the

computational graph (e.g., tfGraph [7]) of a given ML model

and the same architecture configurations previously used as

the inputs to NeuroMeter. Then, the simulator generates the

performance of the ML model running on the target acceler-

ators and the statistics for architecture components. The com-

ponent level statistics are fed to NeuroMeter for computing

runtime power and energy. The end-to-end performance (e.g.,

throughput and latency of inference) is used together with

NeuroMeter’s output on chip area and (runtime) power to com-

pute energy efficiency and cost efficiency. The cost efficiency

(i.e., TOPS/TCO) is approximated as TOPS/mm4/Watt, where

power (Watt) is an approximation of operational expenditures

(OpEx) and area squared (mm4) is an approximation of capital

expenditures (CapEx) because silicon die cost grows roughly

as the square of the die area [28].

TF-Sim supports advanced runtime graph scheduling and

optimization, following the best practices in modern ML com-

piler/runtime such as XLA [1]. Especially for wimpy architec-

tures, TF-Sim considers how to reduce the extra overhead of

partial sum merging and weight/activation broadcast when a

single TU is not large enough to map the whole operation

861

Fig. 7. Throughput Before and After Software Optimization

Fig. 8. Area, TDP Breakdown, Peak TOPS, and Relative Power, Cost
Efficiency in DataCenter Inference Chips. Figure (a) and (b) share the same
x-axis that indicates the design point defined in Table I. The subclusters are
bins of peak TOPS.

without tiling. Moreover, TF-Sim also supports optimizations

to improve parallelism, such as Space-to-Batch [5], Space-

to-Depth [6], and double memory buffering. Fig. 7 shows the

significant improvement of the simulated performance with the

supported software optimizations, especially on small batch

sizes. For wimpy designs, the operation is always too large

to map on single TU without tiling. The mapping strategy

considers how to reduce the extra overhead of partial sum

merging and weight/activation broadcast.

B. Results: Datacenter Inference Accelerator

In this subsection, we first explore the design space using the

chip area and TDP, then analyze the runtime performance and

efficiency by using NeuroMeter in conjunction with TF-Sim

[9], our performance simulator. Our study reveals important

insights for ML inference accelerator designs, which other-

wise cannot be discovered in a fast-yet-accurate way without

NeuroMeter.

1) Chip Thermal Design Power and Area: Fig. 8 shows

the die area and chip thermal design power (TDP) for the

Fig. 9. Performance on Different Batch Size. Throughput is measured as
frame per sec (fps) that essentially is TOPS as operation per frame is constant.

representative design points in the design space as defined in

Table I. As shown in Fig. 8(a), the on-chip memory consumes

the largest portion of the die area among all architecture

components. While die areas of all the design points are within

the area budget of 500mm2, the wimpier the accelerator is,

the larger die area it needs to optimize for the target peak

performance of 92TOPS. This is because wimpy designs need

more cores as each core having smaller TUs, which in turn

needs more interconnect such as NoC and CDB and more

control logic such as scalar cores. However, even with an

extra area budget, the wimpy design still cannot achieve the

same peak performance as the brawny cores. For example, the

wimpy accelerators with 4x4 TUs have comparable or larger

die areas than brawny designs with TUs sized of 64x64 to

256x256, but only less than 1/12 of peak TOPS of that of the

brawny accelerators.

TDP analysis shown in Fig. 8(b) demonstrates a similar

trend, where on-chip memory burns a big portion of the total

power. Wimpy designs consume more power on interconnects

and control flow logic than brawny designs. Fig. 8(b) also

shows that the design point of (128, 4, 1, 1), i.e., the single-

core accelerator with four 128x128 TUs in the core has the

best peak TOPS/Watt and TOPS/TCO. In summary, brawny

datacenter accelerator designs have the better area, TDP,

and efficiency w.r.t peak performance. Next, we will discuss

more insights on the sweet spots of inference accelerator

architectures w.r.t to runtime performance and efficiency.

2) Runtime Performance, Efficiency, and Trade-Offs: Dat-

acenter inference accelerators are designed to maximize

throughput, i.e., frames per second (fps) that essentially is

TOPS as operation per frame is constant, when satisfying the

latency requirements. Batch size is an important factor for

runtime throughput and latency. For example, Fig. 9 shows the

relationship between performance, including both throughput

and latency, and batch size for the design point of (64, 2,

2, 4), i.e., an inference accelerator with 2x4 cores with each

core having two 64x64 TUs. For all ML models, we can

observe significant throughput improvements when the batch

size switches from 1 to 64. This is because even with advanced

graph optimizations, the accelerator still suffers from low

utilization at a small batch size.

862

Fig. 10. Average Runtime Performance of ResNet, Inception, and NasNet of DataCenter Inference Chips. (a) bs=1, (b) bs = bounded by 10ms latency, (c)
bs=256. The relative cost/power efficiency in right y-axes in three subfigures are normalized against the largest absolute values in Subfigure (c). The colored
boxes in the x-axes are optimal points for different design targets.

Fig. 9 also gives us the boundary on batch size for real-time

tasks. Concretely, we assume real-time online inference has a

latency constraint of 10ms based on production requirements

from Google [30] and Facebook [25]. Therefore, the upper-

bound batch sizes to meet the 10ms latency requirement are

16, 4, 32 respectively for ResNet, NasNet, and Inception

with the given design point. Thus, in the subsequent study,

we use the same approach to determine the maximum batch

sizes that maximize the throughput while meeting the latency

requirements. We call such batch size as latency limited batch

size (or medium batch size). Our study also includes batch

size of 1 (aka small batch size) for the optimal latency but

low throughput scenarios (e.g., extremely low latency service)

and batch size of 256 (aka large batch size) with very high

throughput but also high latency for offline inference service

that does not impose latency Service Level Objectives (SLOs).

Fig. 10 shows the average performance and efficiency of

the three datacenter workloads. Fig. 10(a)-(c) represents the

small, medium, and large batch, respectively. Each subfigure

analyzes four metrics, including throughput (achieved TOPS),

TU utilization (achieved TOPS/Peak TOPS), normalized cost

efficiency (achieved TOPS/TCO, aka TOPS/mm4/Watt), and

normalized energy efficiency (achieved TOPS/Watt). Arith-

metic mean is used for averaging the throughput and geometric

mean is used for averaging other metrics as they are all ratios.

Two important insights can be observed as follows:

Firstly, an important insight observed from Fig. 10 is that

the optimal design varies w.r.t. optimization targets, which is

difficult to discover without tools like NeuroMeter. For all the

three batch size categories, the wimpy design with 32 cores

and four 8x8 TUs per core, i.e., (X,N, Tx, Ty) = (8, 4, 4, 8),
always has the highest TU utilization. However, it is the

brawny design with 8 cores and two 64x64 TUs per core

that has the highest throughput because of its much higher

peak TOPS than the wimpy design and thus compensates for

the low TU utilization. The cost-efficiency optimized design

863

is similar to the throughput-optimized design as they both

prefer 64x64 TUs, except the former prefers fewer yet larger

cores to reduce the NoC area overhead. The energy-efficiency

optimized architecture also prefers brawny design with a slight

drop in TU size from 64x64 to 32x32 with both medium and

large batch size. This is because the energy consumption of

systolic arrays scales quadratically with the length of the TU.

These discoveries also carry an important conclusion: while

wimpy designs have higher utilization, it is the brawny designs

(with 64x64 and/or 32x32 TU size) that have the highest

performance and efficiency.

Secondly, an important tradeoff exists among the brawny

designs, where a large improvement of efficiency can be

gained with a small sacrifice on throughput. As shown in Fig.

10(a), when choosing the efficiency-optimized design, i.e., (64,

4, 1, 2), over the throughput-optimized design, i.e., (64, 2, 2,

4), the target accelerator gains 2.1x cost-efficiency improve-

ments and 1.3x power-efficiency improvement, with less than

16% sacrifice on sustainable achieved TOPS. This is because,

compared to the efficiency-optimized design, the throughput-

optimized design has more cores to distribute and balance

computation but requires longer and more power-hungry inter-

core NoC. Similar tradeoffs also exist in the medium and large

batch size configurations as shown in Fig. 10(b) and (c). These

tradeoffs provide important design guidance for architecting

ML inference accelerators with different design priorities.

3) Summary of the Key Observations and Insights: We

summarize the key observations and insights of our study on

brawny and wimpy manycore ML accelerators as follows.

First, for datacenter inference chips, on-chip memory takes

the largest die area among all architectural components. On-

chip memory is also a major power consumer. However, on-

chip interconnect starts to dominate the power consumption as

the accelerators have more and more relatively wimpier cores.

Second, wimpy designs have higher utilization because

smaller TUs are easier to schedule and parallelize with sophis-

ticated software; meanwhile, brawny designs achieve better

performance and efficiency for datacenter inference chips

because they have less overhead from control logic and long

distance on-chip interconnect.

Third, the optimal design varies w.r.t. the optimization

target. There are also important tradeoffs among the selection

of design targets for an architect. For example, for relatively

brawny designs, we can achieve substantial benefits in effi-

ciency with only a small sacrifice in throughput.

IV. MINI-CASE STUDY ON SPARSITY IMPLICATIONS ON

DIFFERENT ML ACCELERATOR ARCHITECTURES

To showcase NeuroMeter’s capability in modeling a wide

range of diverse ML accelerator architectures, we conduct a

small case study on implications of sparsity on both tensor-

unit (TU) based and reduction-tree (RT) based ML accelera-

tors. Leveraging the previous results of the latency-bounded

design space exploration in Fig. 10(b), we pick the power

efficient optima with 32x32 TUs (abbrev. TU32), and the

utilization optima with 8x8 TUs (abbrev. TU8) to further

explore their performance and efficiency when dealing with

sparse workloads. Thanks to NeuroMeter’s flexible capability

in supporting different architectures, we use the reduction tree

based architecture with the same OPS per compute unit as the

corresponding systolic arrays, including 1024-to-1 RT (abbrev.

RT1024) and 64-to-1 RT (abbrev. RT64).

A synthetic SpMV microbenchmark with different element-

wise sparsities is generated manually for a weight matrix

of M × N and the batched vectors of N × K, where

M,N ≥ 1024, and the batch size K ≥ 32, to ensure

sufficient parallelism for TU/RT utilization. The sparse weight

matrices use the Compressed Sparse Row (CSR) format

[24], including the non-zero elements and the row/column

indices. The batched vectors are assumed dense in this case

study; and SpMSpV [10] (i.e., Sparse-Matrix-Sparse-Vector-

Multiplication) is beyond the scope of this case study.

Since TF-Sim, the performance simulator paired with Neu-

roMeter in Sec. III, does not support sparse operations, we

develop a simple roofline model similar to that in [45] for

runtime performance estimation, which is then combined with

NeuroMeter to generate power and energy efficiency results.

The modified simple roofline model is shown in the equations

below:

td = max(td comp, td bw) = max(
C

F
,
SV + SW

B
);

ts = max(ts comp, ts bw) = max(
α · y · C

F
,
SV + β · x · SW

B
);

EnergyEfficiencyGain =
(TOPS/Watt)s

(TOPS/Watt)d

EnergyEfficiencyGain =
(C/ts)/Powers

(C/td)/Powerd

EnergyEfficiencyGain =
Powerd · td

Powers · ts

where td the runtime for dense MV; and td comp and td bw

are the compute time and the memory time for the dense

MV, respectively. According to the roofline model, the overall

runtime td is the maximum of these two terms. Similarly, ts is

the SpMV runtime; and ts comp and ts bw are the SpMV runtime

bound by compute and memory bandwidth, respectively. The

symbol C (in OPs) is the computational operations required

in the dense MV; SV and SW (both in bytes) are the size

of the batched input/output vectors and the weight matrix

respectively without considering sparsity; F (in OPs/sec) and

B (in bytes/sec) are the compute capability and memory

bandwidth of the accelerator, respectively.

The symbol x represents the non-zero ratio of the weight

matrix, i.e., the lower the x, the higher the sparsity of the

weight matrix. The symbol y is the reduction factor of the

total compute operation, and it is determined by the non-zero

ratio x and the distribution of zero elements. Particularly, the

systolic array based TU conducts block-wise zero-skipping to

reduce computation, i.e., if the zero elements form a block of

the size of TU’s systolic array and align on the systolic array

loading boundary, then this all-zero block can be skipped for

computation. For the whole sparse matrix, it is assumed to

864

Fig. 11. The Energy Efficiency Gain of Sparse over Dense computation
at Different Sparsity Levels on (a) Tensor Unit and (b) Reduction Tree
based Architectures. For each architecture, its energy efficiency at different
sparsities are normalized against that of the baseline dense processing on the
same architecture. Thus, the energy efficiency gain larger than one indicates
improvements.

be partitioned into TU-sized blocks and evenly mapped to all

the on-chip systolic arrays with the block-wise zero skipping.

Similarly, RT conducts vector-size zero-skipping. The symbols

α and β denote the compute and storage overheads of sparse

representations, respectively. α is optimistically set to be one,

assuming the overhead of loading and decompressing CSR

weight matrix can be overlapped with the computing time

of systolic arrays and reduction trees. Depending on sparsity,

data type, and the size of the weight matrix, β is a value

between 2.0 and 2.5 in this case study. It is determined by CSR

encoding overhead. First, the whole weight matrix is tiled into

256x256-sized submatrices. Then, each Int8 non-zero element

requires an extra byte for column indexing; each tiled row

requires an extra byte for inner-submatrix row indexing; and

each submatrix requires two bytes for tile indexing.

The energy efficiency gain is the ratio of energy efficiency

(i.e., OPS/Watt [4]) between the SpMV and its dense counter-

part. Since the SpMV and its dense counterpart are considered

to achieve the same effective operations, i.e., MxNxK, the

energy efficiency gain is simplified to SpMV’s runtime energy

reduction compared to its dense counterpart. Considering the

goal is to showcase NeuroMeter’s capability to model power,

area, and timing of a wide range of different ML accelerator

architecture, more sophisticated techniques to maximize the

performance benefits of sparsity are beyond the scope of this

case study. This simple roofline analytical performance model

is then paired with NeuroMeter to study final energy efficiency

implications.

Fig. 11 shows the energy efficiency gain of sparse over

dense under different sparsity levels for different architectures

and configurations. For all designs, the energy efficiency

increases as the sparsity grows. However, compared to the

dense counterpart, the energy efficiency only benefits from

sparsity when the sparsity level is larger than 0.5. This is

because the power saving from the block/vector-wise zero

skipping is limited and is unable to amortize the extra data

transfer of CSR encoding when sparsity is low. Moreover, as

shown in Fig. 11, a clear transition point can be observed

when sparsity is 0.9 in TU8 and RT64; while the efficiency

grows slowly in a low slope in TU32 and RT1024. This implies

that the brawny design gets efficiency benefits mostly from

the reduced CSR encoding as sparsity grows rather than the

block/vector-wise zero skipping.

Clearly, despite its relatively lower absolute energy effi-

ciency as shown in Fig. 10, a wimpier architecture with

fine-grained computing units can benefit from element-wise

sparsity more than a brawnier coarse-grained architecture.

V. RELATED WORK

CACTI [43] is the first analytical modeling framework

for cache and memory arrays. McPAT [39] uses the same

analytical modeling methodology and builds up the modeling

framework for manycore general-purpose processors. Neu-

roMeter leverages the same methodology and techniques used

in CACTI and McPAT.

Eyeriss [17], Eyeriss-v2 [18], and MAESTRO [35] provide

dataflow analysis and modeling framework for ML accelera-

tors. NNest [31] provides a generalized spatial architecture

framework for exploring the design space of ASIC-based

ML inference accelerators. Scale-Sim [51] provides a cycle-

accurate performance simulator for systolic CNN accelerators

through on-chip and off-chip memory access traces. Inter-

stellar [56] uses Halide’s algorithm and scheduling primitives

[49] to express different ML accelerator architectures. Aladdin

[52], Minerva [50], and PolySA [20] provide different frame-

works with (semi) HLS-level capabilities. Timeloop [44] and

Accelergy [55] together provide an ecosystem to model ML

accelerators. Besides providing modeling tools, previous work

like NVDLA [8] open-source the RTL codes of typical ML

accelerator designs; and this kind of work boosts the modeling

ecosystem from another perspective. With simultaneously and

analytically modeling power, area, and timing of key ML ac-

celerator micro-architectures, NeuroMeter advances the state-

of-the-art and provides foundational support for the modeling

ecosystem.

In the era of artificial intelligence, a plethora of ML acceler-

ator architectures are proposed. It has been an open question of

how one can make the design choices among the architectures

based on systolic arrays [17] [21] [30], reduction trees [48]

[57], or SIMD vectors [19] for various scenarios and different

workloads (e.g., training v.s. inference, dense v.s. sparse,

datacenter v.s. edge, and beyond). NeuroMeter is able to model

these popular emerging ML accelerator micro-architectures,

which can help foster an even more comprehensive study on

the ML accelerator frontier.

Brawny v.s. wimpy study [12] has been conducted exten-

sively, with aspects including latency [22], throughput [40],

energy efficiency [41], interconnect [33], heterogeneity [32]

[53], and workload characteristics [16] in the CPU design

space. With the growing ML workloads and the increasing

deployment of ML inference accelerators in the datacenter, a

similar brawny v.s. wimpy question has been raised in domain

specific hardware. Kung et. al [34] have studied the latency of

accelerators with different systolic array sizes.

865

VI. CONCLUSION

NeuroMeter is an architectural analytical framework for

simultaneously modeling power, area, and timing for emerg-

ing ML accelerators. It models all major architectural com-

ponents of emerging ML accelerators, including TU, VU,

on-chip Mem, NoC, MemCtrl, host interface, and beyond.

Moreover, its analytical model of TU and VU captures the

key difference between emerging ML accelerators and the

mainstream CPUs. Its analytical modeling methodology gen-

erates fast and accurate modeling results without relying on

EDA tools. Validations show a reasonable agreement between

NeuroMeter and published data for both datacenter-oriented

(TPU-v1/v2) and mobile/edge-oriented (Eyeriss) state-of-the-

art ML accelerators. NeuroMeter empowers architects with a

fast yet accurate exploration of the large and diverse design

space of modern manycore ML accelerators. When combined

with performance simulations via its flexible and extensible

interface, NeuroMeter enables broader architecture study with

comprehensive metrics such as TOPS/Watt, TOPS/TCO.

By combining the power, area, and timing results of Neu-

roMeter with performance simulation, we explore the many-

core ML accelerator design, including wimpy and brawny

cores. Our study shows that brawny designs with 64x64

systolic arrays are the most performant and efficient for

inference tasks in the 28nm datacenter architectural space with

a 500mm2 die area budget. Our study also reveals important

tradeoffs between performance and efficiency. For datacenter

accelerators with low batch inference, a small (∼16%) sac-

rifice of performance can lead to more than a 2x efficiency

improvement (in achieved TOPS/TCO). To showcase Neu-

roMeter’s capability to model a wide range of accelerator

architectures, we also conduct a mini-case study on energy

efficiency (TOPS/Watt) implications of sparsity on different

ML accelerators. Our results show that despite its relatively

low energy efficiency, it is easier for wimpier accelerator

architectures to benefit from sparsity processing.

ACKNOWLEDGEMENT

We thank all anonymous reviewers for their valuable com-

ments. This work was done when Tianqi Tang worked as an

intern at Google. The work is also supported in part by NSF

1725447 and 1817037.

REFERENCES

[1] “Accelerated linear algebra (xla): Optimizing compiler for machine
learning,” https://www.tensorflow.org/xla/.

[2] “Berkey hardware floating point unit library,” https://github.com/ucb-
bar/berkeley-hardfloat.

[3] “Nvidia a100 tensor core gpu architecture - unprecedented acceleration
at every scale,” https://coral.withgoogle.com/products/som/.

[4] “Performance per watt,” Wikipedia.
[5] “Space-to-batch operation,”

https://www.tensorflow.org/api docs/python/tf/nn/space to batch.
[6] “Space-to-depth operation,”

https://www.tensorflow.org/api docs/python/tf/nn/space to depth.
[7] “Tf-graph,” https://www.tensorflow.org/api docs/python/tf/Graph.
[8] “Nvdla deep learning accelerator,” http://nvdla.org, 2007.
[9] Anonymous, “Tf-sim: A tensorflow performance simulator for machine

learning accelerator architectural exploration,” In submission.

[10] A. Azad and A. Buluç, “A work-efficient parallel sparse matrix-sparse
vector multiplication algorithm,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2017, pp. 688–
697.

[11] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012.
IEEE, 2012, pp. 1212–1221.

[12] L. A. Barroso and U. Hölzle, “The datacenter as a computer: An
introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 4, no. 1, pp. 1–108, 2009.

[13] K. Bhanushali and W. R. Davis, “Freepdk15: An open-source predictive
process design kit for 15nm finfet technology,” in Proceedings of the
2015 Symposium on International Symposium on Physical Design, 2015,
pp. 165–170.

[14] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in
Proceedings of the 40th annual Design Automation Conference, 2003,
pp. 338–342.

[15] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” ACM SIGARCH
Computer Architecture News, vol. 28, no. 2, pp. 83–94, 2000.

[16] S. Chen, S. GalOn, C. Delimitrou, S. Manne, and J. F. Martinez,
“Workload characterization of interactive cloud services on big and small
server platforms,” in 2017 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2017, pp. 125–134.

[17] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 367–379,
2016.

[18] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, 2019.

[19] J. Choquette, O. Giroux, and D. Foley, “Volta: Performance and pro-
grammability,” Ieee Micro, vol. 38, no. 2, pp. 42–52, 2018.

[20] J. Cong and J. Wang, “Polysa: polyhedral-based systolic array
auto-compilation,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[21] J. Dean, “1.1 the deep learning revolution and its implications for
computer architecture and chip design,” in 2020 IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 2020, pp. 8–14.

[22] C. Delimitrou and C. Kozyrakis, “Amdahl’s law for tail latency,”
Communications of the ACM, vol. 61, no. 8, pp. 65–72, 2018.

[23] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, no. 1, pp. 55–63, 1948.

[24] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multipli-
cation on gpus using the csr storage format,” in SC’14: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2014, pp. 769–780.

[25] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia et al., “The architectural
implications of facebook’s dnn-based personalized recommendation,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 488–501.

[26] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[28] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[29] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,
and D. Patterson, “A domain-specific supercomputer for training deep
neural networks,” Communications of the ACM, vol. 63, no. 7, pp. 67–
78, 2020.

[30] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,

866

A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-
ter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017, pp. 1–12.

[31] L. Ke, X. He, and X. Zhang, “Nnest: Early-stage design space explo-
ration tool for neural network inference accelerators,” in Proceedings
of the International Symposium on Low Power Electronics and Design,
2018, pp. 1–6.

[32] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Hetero-
geneous chip multiprocessors,” Computer, vol. 38, no. 11, pp. 32–38,
2005.

[33] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in multi-
core architectures: Understanding mechanisms, overheads and scaling,”
in 32nd International Symposium on Computer Architecture (ISCA’05).
IEEE, 2005, pp. 408–419.

[34] H. Kung, B. McDanel, S. Q. Zhang, X. Dong, and C. C. Chen,
“Maestro: A memory-on-logic architecture for coordinated parallel use
of many systolic arrays,” in 2019 IEEE 30th International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
vol. 2160. IEEE, 2019, pp. 42–50.

[35] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-
ishna, “Understanding reuse, performance, and hardware cost of dnn
dataflow: A data-centric approach,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
754–768.

[36] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 461–475, 2018.

[37] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 740–753.

[38] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “Gpuwattch: enabling energy optimizations in
gpgpus,” ACM SIGARCH Computer Architecture News, vol. 41, no. 3,
pp. 487–498, 2013.

[39] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture,
2009, pp. 469–480.

[40] X. Liang, M. Nguyen, and H. Che, “Wimpy or brawny cores: A
throughput perspective,” Journal of Parallel and Distributed Computing,
vol. 73, no. 10, pp. 1351–1361, 2013.

[41] D. Meisner and T. F. Wenisch, “Does low-power design imply energy
efficiency for data centers?” in IEEE/ACM International Symposium on
Low Power Electronics and Design. IEEE, 2011, pp. 109–114.

[42] T. Miyashita, K. Ikeda, Y. Kim, T. Yamamoto, Y. Sambonsugi,
H. Ochimizu, T. Sakoda, M. Okuno, H. Minakata, H. Ohta et al., “High-
performance and low-power bulk logic platform utilizing fet specific
multiple-stressors with highly enhanced strain and full-porous low-k
interconnects for 45-nm cmos technology,” in 2007 IEEE International
Electron Devices Meeting. IEEE, 2007, pp. 251–254.

[43] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP laboratories, vol. 27, p. 28, 2009.

[44] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to dnn accelerator evaluation,” in 2019 IEEE inter-
national symposium on performance analysis of systems and software
(ISPASS). IEEE, 2019, pp. 304–315.

[45] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey,
“Faster cnns with direct sparse convolutions and guided pruning,” arXiv
preprint arXiv:1608.01409, 2016.

[46] D. Patterson, ““key tpuv1/v2/v3 features vs volta gpu” in the talk of
“domain specific architectures for deep neural networks: Three genera-
tions of tensor processing units” (26’33”),” Allen School Distinguished
Lecture, 2019.

[47] ——, ““the launch of 1000 chips” in the talk of “domain specific
architectures for deep neural networks: Three generations of tensor
processing units” (53’09”),” Allen School Distinguished Lecture, 2019.

[48] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 58–70.

[49] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” Acm Sigplan
Notices, vol. 48, no. 6, pp. 519–530, 2013.

[50] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2016, pp. 267–278.

[51] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Kr-
ishna, “Scale-sim: Systolic cnn accelerator simulator,” arXiv preprint
arXiv:1811.02883, 2018.

[52] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A
pre-rtl, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” in 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). IEEE,
2014, pp. 97–108.

[53] W. J. Song, A. Buyuktosunoglu, C.-Y. Cher, and P. Bose, “Measurement-
driven methodology for evaluating processor heterogeneity options for
power-performance efficiency,” in Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, 2016, pp. 284–289.

[54] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[55] Y. N. Wu and V. Sze, “Accelergy: An architecture-level energy estima-
tion methodology for accelerator designs,” 2019.

[56] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina et al., “Interstellar: Using halide’s scheduling language
to analyze dnn accelerators,” in Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2020, pp. 369–383.

[57] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2016, pp. 1–12.

[58] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8697–
8710.

867

